Building the X-CARVE for KÄRV Woodworking

As mentioned in our previous post … we are in the process of creating and setting up a sister company to Kentech Inc. … called KÄRV.

KÄRV will allow us to take our metalworking talents … along with the Kipware® software we designed and built at Kentech … to the woodworking stage as we create custom, handmade furniture and unique wood carvings and introduce them to the KÄRV product line.

We will be using our quoting and estimating software to help determine pricing … and our conversational CNC programming software to help create G code programs for our X-CARVE CNC router.

And all along the way … we will be blogging about it all here. So we invite you to visit often and see Kipware® in action … and maybe even discover some KÄRV products that you might like to own !!


We began back on October 22 by registering KÄRV as a business in our city … started setting up our workshop … ordered our X-CARVE … and now we have completed the build and test cut for the X-CARVE.

20161102_114331

We waited for a little over (3) weeks to receive the X-CARVE … which seemed like an eternity … after we placed the order. That was a little disappointing. Of course the X-CARVE came un-assembled … and in many many pieces. But the good new was the step-by-step instructions available from INVENTABLES … the creators of the X-CARVE were just fabulous. Very in-depth … easy to follow … and coupled with some patience we went from box to completed assembly in about 24 total hours. One not-so-nice event was that while we were able to build the complete machine … the controller was back-ordered. So the completed machine sat and waited for almost 1 week while we waited for the controller. Finally we had to make a few calls to INVENTABLES to gently nudge them and we received the controller … and set out to test carve.

20161115_185658


We decided to program some simple lettering for our test cut … and make a little sign for the workshop. We used Vectric VCARVE software which we bought from INVENTABLES when we purchased our X-CARVE. The software appears to be quite powerful and it was real easy to create our desired toolpath.

image_list

We cut the letters reversed … leaving .010 of material on the back edge just to hold everything together. Then we glued the letters to a backing piece of wood … turned the whole assemble over and sanded off the .010 of material to reveal the letters. Not bad for a first sample.

So now we are ready to move onto bigger and better things !!
Stay tuned … or visit us at www.KarvWoodworking.com

Kenney Skonieczny – President
Kentech Inc.

Why Use Cutter Compensation In Your CNC Programming ?

The story has been circulating here about a support issue that was raised recently where a Kipware® conversational customer inquired about how to have KipwareT® output program coordinates using the tool center vs. using G41/G42 cutter compensation and the imaginary tool tip on the control. The conversation went something like this :

Support Staff : “Why would you want to do that? That’s really not a good programming practice.”

Client : “Well all our programs are written like that.”

Support Staff : “OK … but that’s not a good programming practice. When we created Kipware® conversational we wanted to include best programming practice so KipwareT® outputs G41 / G42 and does all the calculations and automatically includes all start-up and cancel blocks and code … so it creates a better program. No worries … even if you don’t know how to program it KipwareT® does it all for you.”

Client : “Yes but nobody programs like that.”

Really? Nobody out there programs like that? We find that hard to believe.

So … we decided to post some of our main reasoning for considering the use of cutter compensation on the control as “Best Programming Practice”. If you agree with our points … we hope that you will consider making the change … getting educated … and to start creating your G code programs using G41 / G42 cutter compensation.

cutter_comp1

  1. Program Coordinates … programming to the tool tip center means that coordinates in the program do not reflect actual part print coordinates. Coordinates are based on the tool tip center rather than on the part dimensions. You can imagine the trouble and confusion that happens when edits need to be made.
  2. Tool Interchange – Turning … since the G code was written for a specific tool radius … the program will only function correctly for that tool radius. Decide to use a 1/64 radius for finish when the program was written for a 1/32 radius … re-program or re-generate the toolpath.
  3. Tool Interchange – Milling … I think this point probably comes into play more for milling G code than turning G code. Does your shop always have perfect .500 end mills? If so … WHY ???? Re-grinding end mills is quite a cost saver … but it means your end mills might be .485 or something odd. If you use G41 / G42 … who cares? Just enter the correct offset value.
  4. Dimensional Adjustments … Come on, this is the real world. There is no reason to keep running back and forth to the CAD/CAM guy or programming office when dimensional adjustments need to be made during production … and they will be because cutting conditions are not theoretical, they’re real !!. Cutter compensation and part / tool offsets can handle probably 99.99% of all dimensional adjustments. Use the power of the control !!

Some of the main reasons we hear for why clients don’t use cutter compensation ( and none of them are valid by the way ) …

  1. Nobody taught me. Come on … grab a hold of your future and do some “playing” at the machine … or read for yourself. This is a truly important programming tool … you need to know hoe to use it if you want to go anywhere.
  2. Nobody uses it.  Like our scenario above … just keeping following the crowd … over the cliff. If I ran that shop … the guy that comes to me and says “I think we need to change the way we think about cutter compensation” would have more of my respect than the guy who gives me the excuse “That’s the way we always did it.”

“I’m not stubborn … 

it’s just that doing things your way is stupid.”

After having spent more than 30+ years creating … editing … teaching … G code and running shops on a day-to-day basis … cutter compensation is one of the most mis-understood and mis-used programming feature. And also the most important tool a programmer and operator and shop foreman has at his/her disposal.

If you agree … want to learn more … or just want some additional reading … below is a link to one of our previous posts that dealt with this issue also … CLICK HERE for that article.

Unfortunately CAD/CAM systems have made it so easy to program with tool tip radius … but in the real world, on the shop floor, it can be a real detriment to productivity and efficiency. We urge any CNC programmer out there who is not using cutter compensation on the control to step up and take control of your future … get educated on cutter compensation … and use cutter compensation in your G code. Your future will be a lot brighter … and profitable.

Kenney Skonieczny – President
Kentech Inc.

We’re taking our talents to …

After 30+ years in the metalworking industry … we are about to expand our scope as I TAKE MY TALENTS TO … WOOD !!

decision

On October 22, 2016 … KÄRV was born !!

Personally I have been dabbling in woodworking for quite a while and I felt the time had come to take it to the next level.  I mean why not?? Through Kentech Inc. we have developed all the software needed to operate a manufacturing business through our quoting and estimating … CNC programming … and shop utility software. When you come right down to it … making products from wood is very similar to making products from metal. A collaboration between Kärv and Kentech is a NATURAL !!

We invite you to follow our progress along here at the Kipware Blog and on our CNC Machinist Blog as we rev up. We will be detailing our progress as we receive and set-up our X-CARVE cnc router from Inventables. We we will be illustrating and blogging all the steps from unpacking to first cut at the blogs … so please follow along.

After we get the X-CARVE up and running we will be illustrating and blogging about how we integrate our Kipware® quoting and estimating software and Kipware® programming software into winning work … and producing work !! … so please follow along.

karv_sign2

We will also be publishing more on the offerings from Kärv on the Kärv website … www.KarvWoodworking .com. So please visit the website as well. Who knows … you might even find some items of interest for yourself or for gifts.

Kenney Skonieczny – President
Craftsman and Maker … www.KarvWoodworking.com

Deciphering M CODES for Your CNC Machine

Recently we have been working with some Kipware® conversational clients assisting them in setting up their Kipware® post processor blocks for their G code output. With the addition of our EIA MENU option … users now have greater flexibility in using machine functions ( M ) functions in their G code to accomplish specific tasks. One example might be … parts catcher UP or DOWN to catch a part being parted-off … or chuck OPEN and CLOSE during a bar feed operation … or 4th axis CLAMP and UNCLAMP for CNC mill.

During these sessions we are coming across the situation where the end user doesn’t know the specific M for their machine to accomplish some of these tasks. And for whatever reason … manuals lost or misplaced … machine was purchased used and no manuals were included … or whatever … the end user does not have any Operator or Programmer manuals for their machine which would normally outline the M codes and their function. Without the manuals … they have no way of finding out what M functions control what. OR DO THEY ??

Let’s start this journey with a brief explanation of the HOW’s and WHY’s of CNC M functions. 

  1. First … there is no “industry” standard for M functions. Although you might find that M08 and M09 or M03 and M04 work for most CNC machines … there is not an industry standard that says they must meet a certain criteria.
  2. M functions are designed by the machine tool builder … not the control manufacturer. So you may have (5) Fanuc controlled machines in your shop … some Mori Seiki’s some Hitachi some Leadwell … all with different M functions. Because the M function circuits are designed by the machine tool builder and not Fanuc.

With those basic facts … when you ask your buddy “What’s the M function to open the chuck?” … and he says “M11” … and it doesn’t work on your machine … now you know why.

So how can you find out the M functions for your machine WITHOUT an Operators or Programming manual?

One of the best ways is to use either the electrical or ladder diagram for the machine. Although most Operator or Programming manuals get lost along the way … mostly because they are not kept with the machine but rather float around the office or shop … electrical diagrams ( which outline the electrical circuitry of the machine ) and ladder diagrams ( which outline the logic of the machine ) are most often kept inside the machines electrical cabinet. Open up the doors and you will usually find one or the other or both.

Even if you’re not electrical savvy … the circuits are pretty clearly labelled and you can find say the CHUCK OPEN circuit and trace things back to find the appropriate M function. Again … because they are built and designed by the machine tool builder and their electrical outline is outside the realm of the control … these circuits are contained in the machines electrical documentation … not the docs for the control.

electrical_circuit_pic

electrical_circuit_zoom_pic

Above is a pic of an electrical diagram for a Shizuoka CNC vertical mill … with an exploded view on the bottom. You can see fairly easily even without any electrical savvy that the M10 command will control the 4th axis clamping function. 

With today’s more sophisticated controls … oftentimes the ladder diagram is available directly on the machine controls CRT. You can pull up the ladder and even search for the appropriate function command … but in other cases the “old fashioned” printed ladder can also usually be found in the machines electrical cabinet.

Taking a look at either the electrical diagram or ladder will usually result in some additional road or path to travel to find the appropriate M function on your machine. A simple execution of an MDI command is a good test to see what happens. The old Trial and Error method will open up additional doors or produce the desired results.

M functions are powerful options on your CNC machine that can help automate many tasks and make your manufacturing more efficient. Know that you know the trick to discovering the M functions on your CNC machine … why not peruse your electrical or ladder diagram and see if there are any you might be missing in your programming?

Like what you see?
Please visit us at www.KentechInc.com

Kenney Skonieczny – President
Kentech Inc.

Guidelines for Calculating Machine HOURLY RATE

We tout this fact all the time in our marketing … at Kentech Inc. we are MACHINISTS … we cut chips, we programmed, we ran shop floors for years … then we became software engineers and designers and built software products we saw were lacking during those years. What we refer to as Real World Machine Shop Software. 

As a result, many of our clients come to us to take advantage of that experience … especially those just starting out. Since quoting and estimating is one of the first tasks a new shop needs to get right … we get asked quite a lot of questions about these areas. Our KipwareCYC® ( machining cycletime estimating software ) and KipwareQTE® ( cost estimating / quoting software ) titles are two of our most popular titles. One of the “hot” topics we encounter during online presentations of these titles is often concerning the cost to charge for a machining or a shop rate. So we thought it was a good time to add a blog post with some guidelines we feel are simple enough … but important enough … that can get you to an accurate figure.

Since many shops will utilize an hourly rate as a basis for charging for machining time, this post is dedicated to some helpful guidelines on how to calculate that machining hourly rate. Below are some points we consider important when calculating the hourly rate for a particular machine. The areas requiring calculations include :

Equipment – Cost Per Hour of Operation … a common formula : (machine purchase cost + expected lifetime maintenance cost) / expected hours of operating life.

Direct Labor Cost per Hour … a common formula : (total annual labor costs + taxes + benefits + paid time off) / (total annual hours worked – breaks and training time)

Overhead Cost Per Hour  : Any costs not directly involved in machining a part is overhead. These include costs for administrative staff salary, equipment, furniture, building lease, maintenance and office supplies. Calculate the annual costs of these, then divide by total labor or machine hours for the year. This will be your overhead cost per hour

Once the above costs are calculated … you can use the formulas and guidelines below to arrive at either a “general” shop hourly rate or an hourly rate based on a specific piece of equipment.

General Machine Shop Hourly Rate … a common formula : Average overall shop rate = (average machine cost per hour + labor and overhead cost per hour) x markup

Machine Specific Hourly Rate … a common formula : (specific machine(s) cost per hour + labor + overhead cost per hour) x markup

Somewhat simplified … and usually a work in progress as factors may change. It is important to gather all the figures in the formulas above as best you can … as accurate as you can … and to keep tabs on any factors that may change along the way.

Estimating

Kenney Skonieczny – President
Kentech Inc.

Shop Efficiency Series Part 6 : Gauging Your Shop’s Efficiency with the Magnificent 7

We have dedicated a lot of time and brought out a lot of ideas in our Shop Efficiency series … but most have been based “on the shop floor” and have targeted machining … set-up … and tooling. Quite a few clients have written us to ask about the business side … more of the “How do I actually know if my shop is efficient” … which is a great question. So in this post we turn our attention to the shop management and specifically ways of gauging your shop efficiency.

magnificent_seven

I have listed a few of what I consider critical areas in this Shop Efficiency post … one’s that I feel are among the easiest to gauge and important to watch … what I call the Magnificent Seven. The points below are not in the order of most importance … just simply a list of all the metrics. Creating a spreadsheet and taking a daily count with most of these factors will allow you to see the results as they happen … and over time will reveal the ups and downs of the shop in general … and allow you to make corrections. You can start your journey on the first of the month … for example … and take a few minutes every day or every week to fill in the numbers … building the information in the spreadsheet as you go along. Make a graph … and watch what these factors will reveal. If you stick with it … you will be shocked … maybe happily … maybe not.

(1) Revenue Per Man Hour

Revenue per Man-hour is the annual revenue ( or do it by month ) divided by the total paid man-hours, including paid vacations and overtime. Keeping a running total of these activities and although this is a general look at the numbers … it can be very telling.

(2) Lead Time

Customer Order Lead Time includes order-entry through production to shipment for every job. Again, start a running list from the first of the month and carry on. This stat will reveal your shop efficiency as well as give you a chance to look at the quantity of work going through the shop … and the time frame it takes to go from order received to revenue received.

(3) Labor Turnover

quittingLabor Turnover Rate is the number of voluntary and involuntary separations divided by the typical number of employees. Hopefully you won’t be keeping a monthly log of this stat … but keeping a log of the turnover rate will still yield a telling tale. Although this stat has it’s own revelation … it also shows one key point regarding efficiency. When an employee leaves a company ( for any reason ) he / she also takes a piece of that company’s memory and experiences with them. That loss of memory or experience can lead to efficiency and productivity loss. A company that experiences high turnover rates needs to find ways to insure that experiences and memory don’t leave the building along with the employee. A low labor turnover rate … as the inverse … helps achieve and maintain high performance, productivity and efficiency.

(4) Completion Rate

This factor can be described as the On-Time Completion Rate. It is the percentage of goods delivered on time. This is … obviously … a direct result of shop efficiency. Keep a log for every job going through the shop and how it fared in the On-Time Completion Rate.

(5) Scrap and Rework

scrap

This factor is the Scrap and Rework as a percentage of shop sales. Scrap and rework cost time and money. Some scrap and even some rework is inevitable … but this factor may be most useful as an indicator of how well things are going out on the shop floor. An high scrap and rework percentage is an early tip-off that something … or someone … needs a deeper look.

(6) Machine Uptime

Total Machine Uptime is the hours of production as a percentage of the total operating hours for the shop per week. In other words, what percentage of an average shift are each of your shop’s machines running. Basically put … your employees get paid every day whether they are productive or not … idle machines are not making that money even though the employees are getting paid. Therefore, how much a machine is up and running becomes an important factor for determining just how productive and profitable that shop is.

(7) Machine Availability

Machine Availability is the time machines are actually available for use compared to the time they are supposed to be available. Unscheduled maintenance or other problems will reduce a machine’s expected availability … and impact production schedules negatively which in turn reduce the ability of a shop to deliver product on time.

There will be some out there that utter the phrase “I know all this just by being out in the shop every day.” And that may be true. But seeing the numbers on “paper” ( it might be your computer screen ) is much more telling … and much more emphatic … and makes the point much more clearer.

So … there you have it … the Magnificent Seven. Keeping a close eye on these factors or metrics will most definitely put your shop’s efficiency in glaring focus … and will most likely open your eyes and mind to whole list of other metrics that may be pertinent to your particular shop and operation. Taking the time to develop and review your information as it develops will prove to be more than worth the effort … and keeping the faith will insure your shop is on the straight and steady track.

Estimating

Kenney Skonieczny – President
Kentech Inc.

Shop Efficiency Series Part 5 : Multi-Function Tools

Multi-function tools have been around for quite a while but oftentimes are overlooked for a variety of reasons ranging from lack of understanding to shop inventory. But the truth is that in many situations, multi-function tools can be a key to reduced cycletime … more efficient machining … better workflow … and that ultimate prize … increased shop efficiency.

In this installment of our Shop Efficiency Series … will take a quick look at some of the more common multi-functions tools … outline some of their features and benefits … to hopefully bring about a better understanding and start that “machinist mind” thinking about how these types of tools might be able to benefit your particular shop efficiency.

Milling : Multi-Function End Mill
Multi-function end mills are designed with two main features … low cutting resistance and good chip evacuation when center cutting / drilling and milling at an angle. These two features give these tools the ability to perform both drilling and milling … which makes them an indispensable part of your tooling inventory. Imagine being able to select either plunge milling or side milling when machining … or employing a combination of both because the tool has that capability. The image below gives the whole range of machining op’s that are available with this tool type … it illustrates well their flexibility and capability … and speaks volumes about why they should be one of your go-to tools. As you can see there are a variety of operations where they can make an impact.

endmill_1

Additional Information / Recommendation :

Tool Name / Manufacturer : Kyocera MEY – Ultra Drill Mill
Catalog / Brochure Link :
http://global.kyocera.com/prdct/tool/pdf/e-d_mey.pdf

——————————————————-

Milling : Thriller – Drill / C’Sink / Tap
If you have never utilized a combination drill / thread mill … this tools will really blow your mind. Center drilling … drilling … countersinking … thread milling or tapping as means of creating a tapped hole is SOOOO NOT KOOL !! 4 tools combined with the tool changes … stopping and starting … tool costs … etc. … make this method of creating threaded holes simply NOT ACCEPTABLE when discussing shop efficiency. You may have held off on these thinking that they are really for specific types of threaded holes … but the more you look the more they make sense as the go-to-tool .. with tapping and other standard operations as the secondary option. Our favorite tool comes from Emuge Corp. … which also has outstanding field support BTW … and combines drilling, countersinking and thread milling in one tool … quickly illustrated below.

thriller

But rather than yapping about all the benefits …we suggest watching the video link below … it tells the story way better than words.

Additional Information / Recommendation :

Tool Name / Manufacturer : Emuge Corporation – Thriller
Catalog / Brochure Link : http://emuge.com/media-resources/brochures-catalogs/4-fluted-solid-carbide-thrillers

Video Link : https://www.youtube.com/watch?v=OdOfHEzXMMA

Video Link : https://vimeo.com/6245960

—————————————————————–

Turning : Groove / Turn Tools

For machining operations that include both turning and grooving … it oftentimes makes sense to combine those operations with one tool. Of course the type of material and type of groove machining play an important role here … but when possible, using a combination groove-turn tool can be very beneficial and efficient. Eliminating the tool change and related non-cutting time can improve cycletime … but the flexibility of the tool opens up a wide variety of machining options as well … beyond just grooving operations.

iscar

As the illustration above shows … machining operations such as PARTING OFF … GROOVING … BACK TURNING … and STANDARD TURNING are all possible with this tool type.

Additional Information / Recommendation :

Tool Name / Manufacturer : ISCAR – Groove-Turn

Catalog / Brochure Link : http://www.iscar.com/eCatalog/Applications.aspx?mapp=TG

Video Link : https://www.youtube.com/watch?v=HXhEtc1zl4w

—————————————————————–

 Turning : Boring with an Indexable Drill

In certain non-turning tool applications … it is possible to utilize the same indexable drill used to drill a hole as a boring bar to open up the hole diameter. Benefits of course include decreased cycletime and the use of less tools … but this should be considered carefully and success involves many factors. As stated many times in our blog … we recommend Sandvik tooling quite often … and they have a great online resources that delves into this type of machining and the options to consider before giving it a go in the link below … just click the image to open up their information page :

sandvik

—————————————————————–

Of course there are thousands of ways to use standard type tooling as a multi-function tool … and we are sure that your machinist mind has come up with some novel ones along the way. But we felt the need to include at least some of the more “common” options in any conversation about shop efficiency. So there you have it. Some food for thought … and some multi-function tooling options you may not have been aware of or considered.

Estimating

Please come back for our next installment in our series on Shop Efficiency.

Kenney Skonieczny – President
Kentech Inc.

Shop Efficiency Series Part 4 : Re-Thinking Your HEIGHT OFFSET Strategy

As we have been stressing throughout this Shop Efficiency Series … keeping your spindle running and the green cycle light lit is one of the main keys to making money and profits. In Part 4 we’re going to shift our attention back to the VMC and HMC world and send out some thoughts regarding Tool Height Offsets … “touching off” tools … and how to get that inevitable task done quickly, easily and efficiently … so that the spindle stays running and the tools gets in the chip.

Tool breakage or the need to replace dull or ineffective tools can cause huge loss of cutting times and spindle on time. With the implementation of the simple system we outline below … you can insure that replacing or setting up your tools for machining can be done quickly and efficiently with as little disruption to cutting time as possible. There are some initial costs involved … but the ROI is fast and you’ll see the results immediately.

We’ll take you through the Set-Up and Process first to show you how it works … then highlight some of the Features and Benefits that can achieved by utilizing this system. The basic idea is to utilize a MASTER TOOL to set the part Z0 position … and use the HEIGHT OFFSETS to calibrate the distance difference from the MASTER TOOL and EACH CUTTING TOOL. This system leaves us only the MASTER TOOL to re-calibrate for each workpiece … and allows us to leave the cutting tools unchanged no matter what part we’re running. Setting up ONE tool is obviously faster than setting up multiple tools.

What You’ll Need :

  1. Height Gauge … digital gauge will obviously function the best.
  2. Master Tool ( more details below )
  3. Tool Holder Adapter or Setting Fixture

tip10-pic1

The Master Tool :

In order to utilize the features of this system, you’ll need to create a MASTER TOOL. What we refer to as a master tool would be a piece of stock, say a piece of turned, ground and polished stock or drill rod loaded and secured into a tool holder. It should be secure in the holder … the best way is with a shoulder butting against the tool holder face so it has a positive stop. Another feature is to make this master tool close to the length of the machine specs longest tool. This way you’ll know that no cutting tool can be longer than this master tool.

Tool Holder Adapter or Setting Fixture :

Once you have created your stable Master Tool … the next stable component should be your setting fixture. With a little thought and work you can turn a standard tool tightening fixture … such as the ones pictured below … into something suitable for this purpose … with the main criteria being the stable repeatability of the tool holder positioning.

fixture_complete

The Process :

On a surface plate, set up your height gauge and tool holder adapter to allow for the measuring of your tools. To measure a tool :

  • Place the MASTER TOOL in the setting fixture and set zero at the top of the master tool.

tip10-pic2

  • Place a cutting tool to be measured in the setting fixture and record the reading at the top of the tool’s cutting edge. This is the distance from the master tool tip to the cutting tool tip. This dimension is the value that is to be entered in the machines height offset table for the measured tool.

tip10-pic3

  • Repeat the second step above for each tool to be measured, recording the value on the height gauge for each tool.
  • Load the tools in the magazine and enter the measured height offset values from Step #2 above into their respective height offset table positions.
  • Using the MASTER TOOL, touch the Z0 surface of the workpiece and record the value from the home position to the Z0 location. This value should be entered in the Z table for the work offset (G54 – G59) to be used in the program.

That’s it. 

Your program is ready to run. Your program will call up the G54 – G59 work offset or similar and will know the distance from the master tool to the Z0 location. Using the H value call in the program, the machine will calculate the difference between the master tool and the measured tool and adjust as required.

Now that we’ve set the thoughts and ideas in your mind … feel free to deviate and expand on the basics outlined here.

 Some Features and Benefits :

  1. Let’s suppose you’re going to set up a new job next but will utilize some of the tooling from the previous job. The only set-up required is to use the Master Tool to touch the new Z0 surface, changing the value in the work offsets with this new value. Your cutting tools and their height offsets can remain the same. Save time by touching off one tool instead of many.
  2. You can set-up a spare tool or replacement tool off the machine using the master tool and the height gauge … insuring that your spindle will be back in the cut faster.
  3. You can load say a nice cutting carbide mill in the magazine and use it for a variety of different jobs. No need to touch it off all the time, just use the master tool to get your work offset in Z.
  4. Measuring tools becomes easier, allowing more people to assist with the tool setting . Setters don’t need to know how to operate the machine.

From experience, once you try this method you’ll find it saves you all kinds of time. The best advantage is being able to call out set tools that stay in the magazine. This really speeds up the set-up and changeover process.

Stay tuned for more posts in our Shop Efficiency Series.
Next up we’ll take a look at MULTI-FUNCTION tools that can perform multiple types of cutting and save your shop a ton of time in the process.

Conversational

Kenney Skonieczny – President
Kentech Inc.

Shop Efficiency Series Part 3 : Re-Thinking Your Lathe Tooling

We’ve always been a big fan of Sandvik Coromant and their tooling … not just because they are a member of the Kipware® family … but we have always found their tooling, inserts, support and design to be cutting edge and of the best quality. On the shop floor … they were our tooling manufacturer of choice and never let us down whether in standard type production or when we were looking for that new and innovative tool to get us through the toughest job or materials.

One of my personal best purchases was in converting our CNC lathe tool turret from standard lathe tooling to the Sandvik CAPTO system. I can compare this transformation to the points I outlined in Part #1 of this Shop Efficiency series … click here to read that article … and the transformation that takes place when you bring your VMC table into the 21st century. A CAPTO system will bring your CNC lathe turret into the 21st century.

First – What is CAPTO?

capto_1

The CAPTO system is basically a quick-change, modular tooling system for CNC lathes and turning centers. Instead of mounting tooling directly into the turret … tools are mounted to quick-change clamping units that are mounted onto the turret. Tools are then easily interchanged by simply changing the “head” mounted onto the clamping unit. Need to change from an 80 degree turning tool to a 55 degree … just simple swap the “head”. Need to change from a .750 insert drill to a 1.250 … simply change the “head”. For live tool turning centers … need to change from a 1″ drill to a face mill … simply change the “head”.

Second – Why Use CAPTO?

This type of modular tooling system comes with tons of advantages. Here are just a few of the more important ones pertaining to the Shop Efficiency factors which are the main focus of this series.

capto_2

  • Quick tool change which keeps the spindle running and the machine making chips / money. Not only in changing the complete tool type … but insert changes can take place off-line while the head is replaced at the turret involving less time than an insert change.
  • Greatly reduced set-up and changeover times because of the cutting edge repeatability when re-mounted in the clamping unit.
  • Greater tool stability leads to improved cutting and cycletimes.
  • Greater flexibility in tool selection and tool type.
  • Same tooling can be used throughout the shop … reduced tooling costs and inventory.
  • Greater options for through-tool coolant delivery … again, improved cutting and cycletimes.
  • Turning Centers with Live Tools can see the biggest impact. By simply swapping heads that tool station can go from a face mill to a drill to an end mill in seconds. With greater repeatability meaning less set-up / touch off times. In addition … turning that face mill station into a turning tool station can also be accomplished … quickly and easily.

I could go on and on … but I’m sure you’re machinist mind sees the point.

Third – Cost vs Features

capto_3

Like anything in life … the system does require an initial investment. How much can be spread out over time as you integrate the system into the machine and the shop over time. I will say from experience that the long term savings are there … in quicker change overs, increased cycletimes and reduced tooling inventory … especially if you integrate the system into multiple machines. The beauty part here is that once you have the clamping units on all your machines … all machine will now utilize the same tooling. That is a huge advantage including reduced tooling costs and inventory all around.

Conversational

RESULT – Increased Shop Efficiency

As you can see from the points outlined here … there are a ton of features that can lead your CNC turning department to increased shop floor efficiency with the transformation through a CAPTO system. By integrating the system into your shop bit by bit you can defer the initial investment a bit and still reap the long term advantages and savings as you build the system into your shop floor. From faster insert changes … to faster tool change-overs … to faster set-up … to improved cutting and cycletimes … your shop floor can certainly reap improved shop efficiency with a CAPTO system.

LINKS for ADDITIONAL INFORMATION 

  1. For a more in-depth look … take a peek at the Sandvik Coromant video by CLICKING HERE.
  2. For more information on CAPTO in general … download the informational PDF by CLICKING HERE

Please come back for our next installment in our series on Shop Efficiency. Until next time … Happy Chip Making !!

Kenney Skonieczny – President
Kentech Inc.

Shop Efficiency Series Part 2 : The Infamous MILLING Vise !!

Part 2 in our Shop Efficiency Series will expand a little on Part 1 … and key in on one of the most common workholding options used in the milling world … the vise. Some of the ideas we will present might be old hat for the more professionals in the group … but it’s never a bad idea to refresh and re-look at this subject. For me … something new always clicked when I looked at my vise set-up or holding configuration. Ideas usually led to different set-up ideas … how to position the vise or vises … as well as jaw ideas … material, change-over and others. So we thought it was a good plan to outline some of the newer options available … and to get your idea machine cranked up.

FIRST – DUMP the knee mill vise !!

We still see a lot of shops using an old style knee mill vise … or some revised configuration of one … on their new and modern CNC machine. Ya … you know the ones ….

old_vises

If these look all too familiar to you … the first step in improving your workholding and basically your whole shop floor efficiency is to dump these vises and step up to today. Sure in a pinch … they are OK … but you should really think about putting ’em on Ebay and stick some “hobby machinist” ( whatever the hell that is ) with these toys. If you have a CNC machine and want to be a pro … here are your new alternatives.

new_vises

Here a just couple of important reasons to dump your 1950’s vise for a new CNC vise :

  1. SIZE and SPACE : Without the “wings” sticking our from the sides, these types of vises are slimmer and trimmer ( not to mention lighter ) and will take up less room on your table or fixture plate. That allows for more efficient use of your machine travels and table capacity.
  2. MULTI PART MACHINING : configurations can include double vise jaws … again, multiple part machining. The whole concept of efficiency is to perform the most machining while the tool is in the spindle. That may entail multiples of the same part or combining different parts during the tools cycle.
  3. QUICK CLAMP : The ever present annoyance of rapping your fingers while turning the handle to clamp can also easily be eliminated by incorporating a power clamping system such as a pneumatic wrench instead of the handle … or if you want to “crank it up a notch” … check out the CHIC video below :

SECOND – Jaws for the Modern World

Now that you have upgraded the vise itself … it’s time to incorporate new holding options into the vise. Almost every shop with a CNC vise uses some sort of aluminum vise jaw that has been machined to accept the stock to be machined. It’s a basic … it’s a staple … if you don’t do it it’s time to step into the 70’s.

So the most basic step is to create a CNC program that will machine a blank aluminum vise jaw to fit your CNC vise. That way anytime you need some jaws … call up that proven program and machine some jaws for stock … or keep some on the shelf. Done.

But hold on … now there’s an even better method. We have talked about these jaws before in Making Chips and we are high on their use and rewards. No cap screws … 2 min changeover … and tons of configurations make quick change vise jaws the new go-to vise jaws. Here’s a sample video from Carvesmart … one of our favorites :

THIRD – Don’t forget the TABLE

Part 1 in our series dealt with how to bring your VMC machine table into the 21st century. Combining your new table configuration with these new vise and jaw options can really expand your efficiency. This is a really important read … if you missed that post … here’s the link : http://kentechinc.biz/shop-efficiency-series-part-1-cycletime-vs-workholding/

FOURTH – Don’t forget to MOVE THAT VISE !!

Always placing the vise so it looks nice in the middle of the table causes a lot more harm than you might think. Here’s a past Making Chips post dealing with that subject in detail … http://kentechinc.biz/move-that-vise/ … required reading if you use a vise ( and seriously, who doesn’t ?? ).

RESULT – New Shop Floor Efficiency … with the sky as the limit.

As you can see … these are some fairly simple but really important changes that will greatly effect your shop floor efficiency. From faster set-up changeovers … to more advanced configurations … to faster part load / unload … to simply better cycletimes … these tried and proven changes mean more profits … a happier workforce … with the sky as the limit. We are also confident that as you implement these changes … your “machinist” mind will think of even bigger and better changes now able to be implemented with the upgrades that come with the ones outlined here.

Estimating

Please come back for our next installment in our series on Shop Efficiency.  Until next time … Happy Chip Making !!

Kenney Skonieczny – President
Kentech Inc.